## Mathematics

# Statistics



#### Letter to Families from the DPSCD Office of Mathematics

Dear DPSCD Families,

The Office of Mathematics is partnering with families to support Distance Learning while students are home. We empower you to utilize the resources provided to foster a deeper understanding of gradelevel mathematics.

In this packet, you will find links to videos, links to online practice, and pencil-and-paper practice problems. The Table of Contents shows day-by-day lessons from April 14<sup>th</sup> to June 19<sup>th</sup>. We encourage you to take every advantage of the material in this packet.

Daily lesson guidance can be found in the table of contents below. Each day has been designed to provide you access to materials from Khan Academy and the academic packet. Each lesson has this structure:

| Watch: Khan Academy (if internet access is available)       | Practice: Khan Academy (if internet access is available) | Pencil & Paper Practice:<br>Academic Packet |
|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|
| Watch and take notes on the<br>lesson video on Khan Academy | Complete the practice exercises on<br>Khan Academy       | Complete the pencil and paper practice.     |

If one-on-one, live support is required, please feel free to call the **Homework Hotline** at **1-833-466-3978**. Please check the <u>Homework Hotline page</u> for operating hours. We have DPSCD mathematics teachers standing by and are ready to assist.

We appreciate your continued dedication, support and partnership with Detroit Public Schools Community District and with your assistance we can press forward with our priority: Outstanding Achievement. Be safe. Be well!

Any R. Hank

Deputy Executive Director of K-12 Mathematics

### **Important Links and Information**

#### Clever

Students access Clever by visiting <u>www.clever.com/in/dpscd.</u>

#### What are my username and password for Clever?

Students access Clever using their DPSCD login credentials. Usernames and passwords follow this structure:

#### <u>Username: studentID@thedps.org</u>

Ex. If Aretha Franklin is a DPSCD student with a student ID of 018765 her username would be 018765@thedps.org.

#### Password:

First letter of first name in upper case First letter of last name in lower case 2-digit month of birth 2-digit year of birth 01 (male) or 02 (female) For example: If Aretha Franklin's birthday is March 25, 1998, her password and password would be Af039802.

#### Accessing Khan Academy

To access Khan Academy, visit <u>www.clever.com/in/dpscd.</u> Once logged into Clever, select the Khan Academy button:



Khan Academy 🕕

#### Accessing Your CPM eBook

Students can access their CPM eBook in two ways:

#### Option 1: Access the eBook through <u>Clever</u>

- 1. Visit <u>www.clever.com/in/dpscd.</u> Login using your DPSCD credentials above.
- 2. Click on the CPM icon:



#### Option 2: Visit <a href="http://open-ebooks.cpm.org/">http://open-ebooks.cpm.org/</a>

- 1. Visit the website listed above.
- 2. Click "I agree"
- 3. Select the CPM Statistics eBook:



#### **Desmos Online Graphing Calculator**

Access to a free online graphing and scientific calculator can be found at <u>https://www.desmos.com/calculator</u>.



#### **Table of Contents**

In the following table, you will find the table of contents and schedule for the week of April 13, 2020 through the week of June 15, 2020.

| Week                      | Date               | Торіс                                                                | Watch<br>(10 minutes)                                  | Online Practice<br>(10 minutes)                      | Pencil &<br>Paper<br>Practice<br>(25<br>minutes              |
|---------------------------|--------------------|----------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
|                           | Monday,<br>4/13/20 | Holiday                                                              | N/A                                                    | N/A                                                  | N/A                                                          |
|                           | Day 1              | 5.1.1 Relative<br>Frequency<br>Histograms<br>and Random<br>Variables | Relative Frequency<br>Histograms and Density<br>Curves | Properties of Density<br>Curves                      | Multiple<br>Choice 1-<br>10 and<br>Free<br>Response<br>1 - 3 |
| Week of<br>4/14 –<br>4/17 | Day 2              | 5.1.2<br>Introduction to<br>Density<br>Functions                     | Intro to Density<br>Functions                          | Properties of Density<br>Curves                      |                                                              |
|                           | Day 3              | 5.1.3 The<br>Normal<br>Probability<br>Density<br>Function            | The Normal<br>Probability Density<br>Function          | The Normal Probability<br>Density Function           |                                                              |
|                           | Day 4              | 5.2.1 The<br>Inverse Normal<br>Function                              | The Inverse Normal<br>Function                         | The Inverse Normal<br>Function                       |                                                              |
| Week 2                    | Day 1              | 5.2.2 The<br>Standard<br>Normal<br>Distribution<br>and Z-Scores      | The Standard Normal<br>Distribution and z-<br>Scores   | The Standard Normal<br>Distribution and z-<br>Scores |                                                              |

|        | Day 2 | 5.2.3<br>Additional<br>Practice<br>Problems                              | The Standard Normal<br>Distribution and z-<br>Scores  | <u>The Standard Normal</u><br><u>Distribution and z-</u><br><u>Scores</u><br><u>Scores</u><br><u>Scores</u><br><u>Scores</u><br><u>Scores</u> |                                                              |
|--------|-------|--------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|        | Day 3 | Chapter 5<br>Closure                                                     | Khan Academy<br>Practice Test                         | Khan Academy<br>Practice Test                                                                                                                 |                                                              |
|        | Day 4 | 6.1.1 Mean<br>and Variance<br>of a Discrete<br>Random<br>Variable        | Mean and Variance<br>of a Discrete Random<br>Variable | Mean and Variance of<br>a Discrete Random<br>Variable                                                                                         | Multiple<br>Choice 1-<br>10 and<br>Free<br>Response<br>1 - 3 |
|        | Day 5 | 6.1.2 Linear<br>Combinations<br>of<br>Independent<br>Random<br>Variables | Transforming Random<br>Variables                      | Transforming Random<br>Variables                                                                                                              |                                                              |
| Week 3 | Day 1 | 6.1.3<br>Exploring the<br>Variability of<br>X - X                        | Exploring the<br>Variability of X-X                   | Exploring the<br>Variability of X-X                                                                                                           |                                                              |
|        | Day 2 | 6.2.1<br>Introducing<br>the Binomial<br>Setting                          | Introducing the<br>Binomial Setting                   | Introducing the<br>Binomial Setting                                                                                                           |                                                              |
|        | Day 3 | 6.2.2 Binomial<br>Probability<br>Density<br>Function                     | Binomial Probability<br>Density Function              | Binomial Probability<br>Density Function                                                                                                      |                                                              |

|        | Day 4 | 6.2.3 Exploring<br>Binomial pdf<br>and cdf                               | Exploring Binomial pdf<br>and cdf                            | Exploring Binomial pdf<br>and cdf                            |                                                             |
|--------|-------|--------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
|        | Day 5 | 6.2.4 Shape,<br>Center, and<br>Spread of the<br>Binomial<br>Distribution | Shape, Center, and<br>Spread of the<br>Binomial Distribution | Shape, Center, and<br>Spread of the Binomial<br>Distribution |                                                             |
| Week 4 | Day 1 | 6.2.5 Normal<br>Approximation<br>to the Binomial<br>Distribution         | Normal<br>Approximation to the<br>Binomial Distribution      | Normal Approximation<br>to the Binomial<br>Distribution      |                                                             |
|        | Day 2 | 6.3.1<br>Introduction to<br>the Geometric<br>Distribution                | Introduction to the<br>Geometric Distribution                | Introduction to the<br>Geometric Distribution                |                                                             |
|        | Day 3 | 6.3.2 Binomial<br>and<br>Geometric<br>Practice                           | Binomial and<br>Geometric Practice                           | Binomial and<br>Geometric Practice                           |                                                             |
|        | Day 4 | Chapter 6<br>Closure                                                     | Khan Academy<br>Practice Test                                | Khan Academy<br>Practice Test                                |                                                             |
|        | Day 5 | 7.1.1<br>Introduction to<br>Sampling<br>Distributions                    | Introduction to<br>Sampling Distributions                    | Introduction to<br>Sampling Distributions                    | Multiple<br>Choice<br>#1-10 and<br>Free<br>Response<br>#1-2 |

|        | I     |                                                                                    |                                                                     |                                                                                                                                                 | 1 |
|--------|-------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Week 5 | Day 1 | 7.1.2<br>Simulating<br>Sampling<br>Distributions of<br>Sample<br>Proportions       | Simulating Sampling<br>Distributions of<br>Sample Proportions       | Simulating Sampling<br>Distributions of Sample<br>Proportions                                                                                   |   |
|        | Day 2 | 7.1.3 Formulas<br>for the<br>Sampling<br>Distributions of<br>Sample<br>Proportions | Formulas for the<br>Sampling Distributions<br>of Sample Proportions | Eormulas for the<br>Sampling Distributions<br>of Sample Proportions                                                                             |   |
|        | Day 3 | 7.2.1<br>Confidence<br>Interval for a<br>Population<br>Proportion                  | Confidence Interval<br>for a Population<br>Proportion               | Confidence Interval for<br><u>a Population</u><br><u>Proportion</u><br><u>Proportion</u><br><u>Confidence Interval for</u><br><u>Proportion</u> |   |
|        | Day 4 | 7.2.2<br>Confidence<br>Levels for<br>Confidence<br>Intervals                       | Confidence Levels for<br>Confidence Intervals                       | Confidence Levels for<br>Confidence Intervals                                                                                                   |   |
|        | Day 5 | 7.2.3<br>Changing the<br>Margin of Error<br>in Confidence<br>Intervals             | Changing the Margin<br>of Error in Confidence<br>Intervals          | Changing the Margin<br>of Error in Confidence<br>Intervals                                                                                      |   |
| Week 6 | Day 1 | 7.2.4<br>Evaluating<br>Claims with<br>Confidence<br>Intervals                      | Evaluating Claims<br>with Confidence<br>Intervals                   | Evaluating Claims with<br>Confidence Intervals                                                                                                  |   |
|        |       |                                                                                    |                                                                     |                                                                                                                                                 |   |

|        |                    | Chapter 7                                                      | Khan Academy                                                                                                     | Khan Academy                                   |                                                             |
|--------|--------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|
|        | Day 2              | Closure                                                        | Sampling Distributions<br>Practice Test<br>Practice Test<br>Man Academy<br>Confidence Intervals<br>Practice Loct | Sampling Distributions<br>Practice Test        |                                                             |
|        |                    |                                                                |                                                                                                                  |                                                |                                                             |
|        | Day 3              | 8.1.1<br>Introduction to<br>Hypothesis<br>Testing              | Introduction to<br>Hypothesis Testing                                                                            | Introduction to<br>Hypothesis Testing          | Multiple<br>Choice<br>#1-10 and<br>Free<br>Response<br>#1-3 |
|        | Day 4              | 8.1.2<br>Hypothesis<br>Tests for<br>Proportions                | Hypothesis Tests for<br>Proportions                                                                              | Hypothesis Tests for<br>Proportions            |                                                             |
|        | Day 5              | 8.1.3<br>Alternative<br>Hypotheses<br>and Two-<br>Tailed Tests | Alternative<br>Hypotheses and Two-<br>Tailed Tests                                                               | Alternative Hypotheses<br>and Two-Tailed Tests |                                                             |
|        | Monday,<br>5/25/20 | Holiday                                                        |                                                                                                                  |                                                |                                                             |
| Week 7 | Day 1              | 8.2.2 Power of<br>a Test                                       | Power of a Test                                                                                                  | Power of a Test                                |                                                             |

|        | Day 2 | 8.3.1 The<br>Difference<br>Between Two<br>Proportions              | The Difference<br>Between Two<br>Proportions                            | The Difference<br>Between Two<br>Proportions    |                                                            |
|--------|-------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|
|        | Day 3 | 8.3.2 Two-<br>Sample<br>Proportion<br>Hypothesis<br>Tests          | Two-Sample<br>Proportion Hypothesis<br>Tests<br>Tests<br>Tests<br>Tests | Two-Sample Proportion<br>Hypothesis Tests       |                                                            |
|        | Day 4 | 8.3.3 More<br>Proportion<br>Inference                              | More Proportion<br>Inference                                            | More Proportion<br>Inference                    |                                                            |
| Week 8 | Day 1 | Chapter 8<br>Closure                                               | Khan Academy<br>Practice Test                                           | Khan Academy<br>Practice Test                   |                                                            |
|        | Day 2 | 9.1.1<br>Introduction to<br>the<br>Chi-Squared<br>Distribution     | Introduction to the<br>Chi Squared<br>Distribution                      | Introduction to the Chi<br>Squared Distribution | Multiple<br>Choice<br>#1-8 and<br>Free<br>Response<br>#1-2 |
|        | Day 3 | 9.1.2 Chi-<br>Squared<br>Goodness of Fit                           | Chi-Squared Goodness<br>of Fit                                          | Chi-Squared Goodness of<br>Eit                  |                                                            |
|        | Day 4 | 9.1.3 More<br>Applications of<br>Chi-Squared<br>Goodness of<br>Fit | Chi-Squared<br>Goodness of Fit                                          | Chi-Squared Goodness<br>of Fit                  |                                                            |

|         | Day 5 | 9.2.1<br>Chi-Squared<br>Test for<br>Independenc<br>e                             | Chi Squared Test for<br>Independence                                 | Chi Squared Test for<br>Independence                                 |                                                             |
|---------|-------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| Week 9  | Day 1 | 9.2.2<br>Chi-Squared<br>Test for<br>Homogeneity<br>of Proportions                | Chi Squared Test for<br>Homogeneity of<br>Proportions                | Chi Squared Test for<br>Homogeneity of<br>Proportions                |                                                             |
|         | Day 2 | 9.2.3<br>Practicing and<br>Recognizing<br>Chi-Squared<br>Inference<br>Procedures | Practicing and<br>Recognizing Chi<br>Squared Inference<br>Procedures | Practicing and<br>Recognizing Chi<br>Squared Inference<br>Procedures |                                                             |
|         | Day 3 | Chapter 9<br>Closure                                                             | Khan Academy<br>Practice Test                                        | Khan Academy<br>Practice Test                                        |                                                             |
|         | Day 4 | 10.1.1<br>Quantitative<br>Sampling<br>Distributions                              | Quantitative<br>Sampling Distributions                               | Quantitative Sampling<br>Distributions                               | Multiple<br>Choice<br>#1-10 and<br>Free<br>Response<br>#1-2 |
|         | Day 5 | 10.1.2 More<br>Sampling<br>Distributions                                         | More Sampling<br>Distributions                                       | More Sampling<br>Distributions                                       |                                                             |
| Week 10 | Day 1 | 10.2.1 The<br>Central Limit<br>Theorem                                           | The Central Limit<br>Theorem                                         | The Central Limit<br>Theorem                                         |                                                             |

| Day 2 | 10.2.2 Using<br>the Normal<br>Distribution<br>with Means     | Using the Normal<br>Distribution with<br>Means | Using the Normal<br>Distribution with Means  |  |
|-------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------|--|
| Day 3 | 10.3.1<br>Introducing<br>the t-<br>Distribution              | Introducing the t-<br>Distribution             | Introducing the t-<br>Distribution           |  |
| Day 4 | 10.3.2<br>Calculating<br>Confidence<br>Intervals for µ       | Calculating<br>Confidence Intervals<br>for µ   | Calculating<br>Confidence Intervals<br>for µ |  |
| Day 5 | 10.3.3<br>z-Tests and t-<br>Tests for<br>Population<br>Means | z-Tests and t-Tests for<br>Population Means    | z-Tests and t-Tests for<br>Population Means  |  |

#### CPM Stats Assignment, Chapter 5

| Multiple Choice                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Which of the following statements are                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. Which of the following statements are                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRUE?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRUE?                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ol> <li>The Standard Normal curve has a<br/>mean of one and a standard<br/>deviation of zero.</li> <li>As the standard deviation gets<br/>smaller, the normal curve<br/>becomes lower and wider.</li> <li>By the Empirical Rule 68% of the<br/>area under a normal curve is<br/>within two standard deviations of<br/>the mean.</li> <li>II and III</li> <li>II only</li> <li>none of them</li> <li>I and II</li> <li>I and II</li> </ol>                                            | <ol> <li>For a standard normal density<br/>function: P(z &lt; -2) = 0.16</li> <li>As the standard deviation gets<br/>larger, the normal curve<br/>becomes higher and narrower.</li> <li>By the Empirical Rule 95% of the<br/>area under a normal curve is<br/>within two standard deviations of<br/>the mean.</li> <li>II only</li> <li>III only</li> <li>III only</li> <li>III and III</li> <li>I, II and III</li> <li>I only</li> </ol> |
| <ul> <li>E. I and III</li> <li>2. Which of the following statements are TRUE? <ol> <li>The area under a probability density function is proportional to its height.</li> <li>By the Empirical Rule 68% of the area under a normal curve is within one standard deviation of the mean.</li> <li>As the standard deviation gets smaller, the normal curve becomes higher and narrower.</li> <li>I only</li> <li>none of them</li> <li>I and II</li> <li>I and II</li> </ol> </li> </ul> | <ul> <li>4. Which of the following statements are TRUE?</li> <li>1. As the standard deviation gets smaller, the normal curve becomes lower and wider.</li> <li>11. For a standard normal density function: P(z &lt; -1) = 0.025</li> <li>111. The area under all probability density functions is equal to 1.</li> <li>A. III only</li> <li>B. II and III</li> <li>C. I, II and III</li> <li>D. I only</li> <li>E. II only</li> </ul>     |

| 5. Which of the following statements are FALSE?                                                                                                                                                                                                                                                                                                                                                                       | 7. Which of the following statements are<br>FALSE?                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>As the standard deviation gets<br/>smaller, the normal curve<br/>becomes higher and narrower.</li> <li>All normal curves are symmetric<br/>and bell-shaped.</li> <li>If the domain of a uniform<br/>continuous probability density<br/>function is 9.0 &lt; X &lt; 34.0, then<br/>P(20.0 &lt; X &lt; 27.0) = 0.4445</li> </ol>                                                                               | <ol> <li>If the domain of a uniform<br/>continuous probability density<br/>function is 0.0 &lt; X &lt; 26.0, then its<br/>height is = 0.0445</li> <li>All normal curves are symmetric<br/>and bell-shaped.</li> <li>As the standard deviation gets<br/>smaller, the normal curve<br/>becomes higher and narrower.</li> </ol>                                                                                                                           |
| A. III only                                                                                                                                                                                                                                                                                                                                                                                                           | A. I only                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B. I, II and III                                                                                                                                                                                                                                                                                                                                                                                                      | B. I and II                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C. I only                                                                                                                                                                                                                                                                                                                                                                                                             | C. II and III                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D. I and III                                                                                                                                                                                                                                                                                                                                                                                                          | D. I, II and III                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E. none of them                                                                                                                                                                                                                                                                                                                                                                                                       | E. III ONIY                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6. Which of the following statements are TRUE?                                                                                                                                                                                                                                                                                                                                                                        | 8. Which of the following statements are TRUE?                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>If the domain of a continuous<br/>uniform probability density<br/>function is 8.0 &lt; X &lt; 36.0, then<br/>P(20.0 &lt; X &lt; 27.0) = 0.2500</li> <li>All symmetric, bell-shaped curves<br/>are normal.</li> <li>For a standard normal density<br/>function: P(z &gt; 2) = 0.16</li> <li>A. I only</li> <li>B. none of them</li> <li>C. II only</li> <li>D. I and III</li> <li>E. I, II and III</li> </ol> | <ul> <li>I. The Standard Normal curve has a mean of zero and a standard deviation of one.</li> <li>II. If the domain of a uniform continuous probability density function is 9.0 &lt; X &lt; 19.0, then its height is = 0.1515</li> <li>III. If the domain of a uniform continuous probability density function is 9.0 &lt; X &lt; 19.0, then P(13.0 &lt; X &lt; 18.0) = 0.7440</li> <li>A. I only</li> <li>B. II only</li> <li>C. I and II</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                       | D. none of them                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 9. Which of the following statements are FALSE?                                                                                           | 10. Which of the following statements are FALSE?                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <ol> <li>By the Empirical Rule 95% of the<br/>area under a normal curve is<br/>within two standard deviations of<br/>the mean.</li> </ol> | I. By the Empirical Rule 95% of the area under a normal curve is within two standard deviations of the mean. |
| <li>II. All normal curves are symmetric<br/>and bell-shaped.</li>                                                                         | <li>II. All normal curves are symmetric<br/>and bell-shaped.</li>                                            |
| III. The Standard Normal curve has a mean of zero and a standard deviation of one.                                                        | III. The Standard Normal curve has a mean of zero and a standard deviation of one.                           |
| A. none of them                                                                                                                           | A. none of them                                                                                              |
| B. III only                                                                                                                               | B. III only                                                                                                  |
| C. I, II and III                                                                                                                          | C. I, II and III                                                                                             |
| D. I and III                                                                                                                              | D. I and III                                                                                                 |
| E. I and II                                                                                                                               | E. I and II                                                                                                  |

#### Chapter 5, Free Response

- 1. Daniella is working at her sister's pharmacy investigating the number of filled prescriptions. Daniella believes the distribution of prescription pain reliever orders are normally distributed with a mean of 24.416 orders/day and a standard deviation of 2.435 orders/day. Sketch the Normal probability density function. What is the 71st percentile filled prescription pain reliever orders?
- 2. Daniella is working at her grandmother's coffee shop investigating the production of donuts. Daniella believes the distribution of donut calorie counts are normally distributed with a mean of 277.8 Kcal and a standard deviation of 34 Kcal. Sketch the Normal probability density function. What is the probability of selecting a donut calorie count greater than 333.1 Kcal?
- 3. Mules have 63 chromosomes, while horses have 64 and donkeys have 62. While in Colorado describing threatened populations of mules, Joshua described that the distribution of mule weights are normally distributed with a mean of 558.91 lbs and a standard deviation of 56.99 lbs. Sketch the Normal probability density function. 41 percent of mule weights are more than \_\_\_\_\_ lbs?

Г

| 1. | What is the standard deviation of the discrete probability distribution?         (X)       1       7       3       6       4       9         P(X)       0.10       0.30       0.07       0.21       0.21       0.11         A.       2.040       8.       5.500       C.       1.428       0.       5.010         E.       2.238       2.238       2.238       2.238       2.238 | <ul> <li>2. 3 The chance of an EverCell AAA battery working properly is 62%. You test an "extra value pack" of 7 batteries in your calculator. What is the mean and SD for the distribution of the number of properly working batteries?</li> <li>A. Mean: 4.34; SD: 1.284</li> <li>B. Mean: 4.34; SD: 1.649</li> <li>C. Mean: 4.34; SD: 6.38</li> <li>D. Mean: 3.5; SD: 6.38</li> <li>E. Mean: 4; SD: 1.284</li> </ul> |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | The mean of the distribution of the variable<br>X below is 4.04 and the SD is 2.391                                                                                                                                                                                                                                                                                              | 4. The chance of an EverCell AAA battery<br>working properly is 63%. You test an "extra<br>value pack" of 6 batteries in your                                                                                                                                                                                                                                                                                           |
|    | (X) 3 4 7 0<br>P(X) 0.07 0.45 0.29 0.19                                                                                                                                                                                                                                                                                                                                          | calculator. What is the probability at most 3<br>of the batteries are working?                                                                                                                                                                                                                                                                                                                                          |
|    | If Y is defined as Y = -3X + 9, what is the<br>mean of Y?<br>A1.5<br>B. 4.04<br>C. 3.5<br>D12.12<br>E3.12                                                                                                                                                                                                                                                                        | A. 0.137<br>B. 0.860<br>C. 0.394<br>D. 0.086<br>E. 0.949                                                                                                                                                                                                                                                                                                                                                                |

| <ul> <li>5. A lacrosse goalie is able to block 45% of the shots taken on goal. An opposing team takes 28 shots during a game and each shot is independent of the others. What is the probability exactly 10 shots are blocked?</li> <li>A. (10C28) (0.55)<sup>10</sup> (0.45)<sup>18</sup></li> <li>B. 1 - (28C10) (0.45)<sup>28</sup></li> <li>C. (28C10) (10)<sup>0.45</sup> (10)<sup>0.55</sup></li> <li>D. (28C10) (0.45)<sup>10</sup> (0.55)<sup>18</sup></li> <li>E. (18C9) (0.45)<sup>9</sup> (0.55)<sup>18</sup></li> </ul> | <ul> <li>A lacrosse goalie is able to block 42% of the shots taken on goal. An opposing team takes many shots during a game and each shot is independent of the others. What is the probability any number except 6 shots are taken to get the first block?</li> <li>A. geometcdf(p = 0.42, x = 6)</li> <li>B. 1 - geometpdf(p = 0.42, x = 6)</li> <li>C. binompdf(n = 28, p = 0.42, x = 6)</li> <li>D. 1 - geometcdf(p = 0.42, x = 5)</li> <li>E. 1 - binomcdf(n = 28, p = 0.42, x = 6)</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>7. The mean of the distribution of the variable X below is 4.83 and the SD is 2.446</li> <li>(X) 2 1 0 6 8 3<br/>P(X) 0.19 0.09 0.01 0.41 0.20 0.10</li> <li>If Y is defined as Y = 3X + 29, what is the mean of Y?</li> <li>A. 39</li> <li>B. 14.49</li> <li>C. 4.83</li> <li>D. 43.49</li> <li>E. 3.333</li> </ul>                                                                                                                                                                                                       | <ul> <li>8. Assume 61% of firefighters in California have annual incomes of at least \$80,000. A sample of 7 firefighters is selected. What is the expected value and standard deviation for the distribution of the number of the firefighters that have incomes at least \$80,000?</li> <li>A. Mean: 3.5; SD: 6.39</li> <li>B. Mean: 4; SD: 0.61</li> <li>C. Mean: 4; SD: 1.29</li> <li>D. Mean: 4; SD: 6.39</li> <li>E. Mean: 4.27; SD: 1.29</li> </ul>                                          |
| <ul> <li>9. What is the mean of the discrete probability distribution?</li> <li>(X) 5 6 9 0 3<br/>P(X) 0.43 0.25 0.13 0.14 0.05</li> <li>A. 4.600</li> <li>B. 2.455</li> <li>C. 0.200</li> <li>D. 6.029</li> <li>E. 4.970</li> </ul>                                                                                                                                                                                                                                                                                                | <ul> <li>10. Assume 60% of firefighters in California have annual incomes of at least \$80,000. A sample of many firefighters is selected. What is the probability you will need to select more than 3 firefighters to find one with an income of at least \$80,000?</li> <li>A. 0.904</li> <li>B. 0.840</li> <li>C. 0.936</li> <li>D. 0.064</li> <li>E. 0.346</li> </ul>                                                                                                                           |

#### Chapter 6, Free Response

1. Radius Electronics claims 84% of its πPhones are still working after three years.

A sample of 11 3-year old  $\pi$ Phones is tested....

- a. What is the probability exactly 9 πPhones are still working?
- b. What is the probability at most 9  $\pi$ Phones are still working?

A sample of many 3-year old  $\pi$ Phones is tested.

- c. What is the probability the tester will need to test at least 9  $\pi$ Phones to find a working one?
- 2. At a certain wildlife refuge 42% of the ruddy duck population has selenium levels in their blood which can impair development of their offspring.

Suppose wildlife managers capture 14 ducks for study. ...

- A. What is the probability fewer than 6 ducks will have blood levels of selenium high enough to impair development of their offspring?
- B. What is the probability at most 6 ducks will have blood levels of selenium high enough to impair development of their offspring?

Suppose wildlife managers capture many ducks for study.

- c. What is the probability they will have to capture at least 6 ducks to find one with blood levels of selenium high enough to impair development of their offspring?
- 3. Radius Electronics claims 83% of its  $\pi$ Phones are still working after three years.

A sample of 11 3-year old  $\pi$ Phones is tested....

i.What is the probability fewer than 10 πPhones are still working?

ii.What is the probability at most 10  $\pi$ Phones are still working?

A sample of many 3-year old  $\pi$ Phones is tested.

i.What is the probability the tester will need to test exactly 10 πPhones to find a working one?

| 1.<br>A. 228<br>B. 280<br>C. 171 | If you wish to make a 95%<br>confidence interval of<br>proportions with a margin of<br>error of ± 6.49%, what is the<br>approximate sample size<br>required? | 2. While investigating the<br>proportion of people who<br>have green eye coloring,<br>Tonya was 97% confident th<br>interval from 0.0623 to 0.198<br>captured the true<br>proportion. What would be<br>the correct conclusion for<br>the claim $p = -0.00$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D. 394<br>E 195                  |                                                                                                                                                              | B. You can accept the claim.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| L. 175                           |                                                                                                                                                              | C. You cannot fail to prepare without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                  |                                                                                                                                                              | D. You can neither accept nor reject<br>the claim.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                  |                                                                                                                                                              | E. You can bet your bottom dollar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3.                               | A sample of size 624 was taken from a large population $\hat{p} = 0.2484$ and a                                                                              | <ol> <li>Match the confidence interval<br/>condition I, II, III, with its<br/>corresponding property a, b, c.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                  | population proportion ±2.93%<br>was calculated. What                                                                                                         | c. Random selection<br>d. Independent trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                  | confidence level was used?                                                                                                                                   | e. Large counts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| A. 97%                           |                                                                                                                                                              | a. Requires $n(1 - p) \ge 10$<br>b. Requires the population to be at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| B. 95%                           |                                                                                                                                                              | least 10 times the sample size if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| C. 99%                           |                                                                                                                                                              | sampled without replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| D. 91%                           |                                                                                                                                                              | C. Assures $\mu_{\hat{p}} = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| E. 93%                           |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                  |                                                                                                                                                              | A. $I \rightarrow b$ , $I \rightarrow a$ , $I I \rightarrow c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                  |                                                                                                                                                              | B. $ \rightarrow b, \parallel \rightarrow c, \parallel \parallel \rightarrow a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                  |                                                                                                                                                              | C. $I \rightarrow a$ , $II \rightarrow c$ , $III \rightarrow b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                  |                                                                                                                                                              | $\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ |  |  |
|                                  |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

| 5. If 54% of people have a more strict opinion<br>on gun control laws, which of the following<br>represents the approximate probability<br>that a simple random sample of 178<br>people will contain fewer than 86 people<br>with a more strict opinion on gun control<br>laws?<br>A. $P\left(z < \frac{86-96}{\sqrt{86(92)/178}}\right)$<br>B. $P\left(z < \frac{0.54-0.483}{\sqrt{0.483(0.517)/178}}\right)$                                        | <ul> <li>6. Sophie found a 94%<br/>confidence interval from<br/>0.0122 to 0.0296 for the<br/>population proportion of<br/>people who have a non-major<br/>political party affiliation. Sophie<br/>is unable to accept or reject<br/>which of the following claims:</li> <li>I.p ≠ 0.03<br/>II.p &gt; 0.03<br/>III.p &lt; 0.01</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C. $P\left(z < \frac{0.483 - 0.54}{\sqrt{0.483(0.517)/178}}\right)$<br>D. $P\left(z < \frac{0.483 - 0.54}{\sqrt{0.54(0.46)/178}}\right)$<br>E. $P\left(z < \frac{86 - 96}{\sqrt{0.54(0.46)/178}}\right)$                                                                                                                                                                                                                                              | A. I, II and III<br>B. I and III<br>C. none of them<br>D. II and III<br>E. II only                                                                                                                                                                                                                                                       |
| <ol> <li>William is collecting data on the proportion<br/>of people who have few programming<br/>skills and calculated a 96% confidence<br/>interval from 0.7690 to 0.8711. Which of the<br/>following statements are TRUE?</li> </ol>                                                                                                                                                                                                                | 8. Given sample proportion =<br>0.563, x = 45, and a 90%<br>confidence level, what is the<br>appropriate confidence<br>interval?                                                                                                                                                                                                         |
| <ul> <li>I.The probability William captured the population proportion of people who have few programming skills in the interval from 0.7690 to 0.8711 is equal to 1.0 or 0.0.</li> <li>II.If William wanted to decrease the width of the confidence interval, William could increase the sample size.</li> <li>III.There is a 96% chance the population proportion of people who have few programming skills is between 0.7690 and 0.8711.</li> </ul> | <ul> <li>A. (0.4582  <li>B. (0.4486  <li>C. (0.4713  <li>D. (0.4654  <li>E. (0.4335  </li></li></li></li></li></ul>                                                                                                                                                                                                                      |
| <ul> <li>A. I and II</li> <li>B. II only</li> <li>C. I only</li> <li>D. none of them</li> <li>E. I, II and III</li> </ul>                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                          |

| 9. | You take an SRS of size 334 from the 7896<br>students at Giant State University (GSU)<br>and calculate the proportion who are<br>studying Economics. You then take an SRS<br>of size 787 from the -1969 students at Mega<br>City College (MCC) and calculate the<br>proportion who are studying Economics. If | 10. A 95% C.I. is made from a<br>simple random sample of size<br>200 from a population of size<br>10,000. Which of the following<br>changes would decrease the<br>margin of error? |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | you could repeat this process many times,<br>which of the following best describes how<br>much your sample proportions would vary?                                                                                                                                                                            | I.Use a sensible cluster sample<br>instead of an SRS (though the<br>decrease might be difficult to<br>calculate)                                                                   |  |  |  |
| A. | The MCC proportion would vary significantly less than the GSU proportion because its population is significantly smaller.                                                                                                                                                                                     | II.Measure a proportion with a $\hat{p}$<br>closer to 0.5<br>III.Increase the sample size to 400                                                                                   |  |  |  |
| Β. | The MCC proportion would vary significantly <i>more</i> than the GSU proportion because its population is significantly smaller.                                                                                                                                                                              | A. III only<br>B. I and II<br>C. I and III<br>D. Loply                                                                                                                             |  |  |  |
| C. | The variability of the two sample<br>proportions would be about the same,<br>since the sample is less than 10% of the<br>population in both cases.                                                                                                                                                            | E. Il only                                                                                                                                                                         |  |  |  |
| D. | The MCC proportion would vary<br>significantly less than the GSU proportion<br>because its sample size is significantly<br>larger.                                                                                                                                                                            |                                                                                                                                                                                    |  |  |  |
| E. | They could vary significantly or be about<br>the same; we do not have enough<br>information to decide.                                                                                                                                                                                                        |                                                                                                                                                                                    |  |  |  |

#### Chapter 7, Free Response

- Davis is collecting data on the proportion of people who have no widows peak. Shari claims that "The proportion of people having no widows peak is greater than 0.69." then Davis found a published survey of 851 randomly selected persons which found 552 people who have no widows peak. Use the results of the survey Davis found to construct a 99% confidence interval and evaluate Shari's claim.
- 2. Jillian is researching the proportion of people who have an unfavorable opinion of organic food. Alejandro claims that "The proportion of people having an unfavorable opinion of organic food is equal to 0.12." then Jillian found a published survey of 677 randomly selected persons which found 104 people who have an unfavorable opinion of organic food. Use the results of the survey Jillian found to construct a 97% confidence interval and evaluate Alejandro's claim.

#### CPM Stats Assignment, Chapter 8

| Mul | iple Choice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | <ul> <li>Which of the following statements are true about Type II error?</li> <li>I.It is failing to reject the null hypothesis when it is false</li> <li>II.It is not possible if you accept the alternate hypothesis</li> <li>III.It is only possible if you fail to accept the alternate hypothesis</li> <li>A. I and III</li> <li>B. I, II and III</li> <li>C. II and III</li> <li>D. I only</li> <li>E. II only</li> </ul>                                                              | 2. While studying the proportion of people<br>who have a moderate or less than a<br>pack/day smoking addiction, Jose<br>surveyed 199 people testing the claim $p <$<br>0.08 and got these results:<br>H <sub>0</sub> : $p = 0.08$<br>H <sub>a</sub> : $p < 0.08$<br>The sample proportion is $\hat{p} = 0.0503$<br>Determine the p-value.<br>A. 0.0609<br>B. 0.1319<br>C. 0.3650<br>D. 0.2916<br>E. 0.0067 |
| 3.  | When planning a significance test a<br>researcher uses a 0.0900 significance level<br>and designs the experiment to have a<br>power of 0.94 assuming a chosen<br>alternative value of the parameter of<br>interest. Which of the following can be<br>done to increase the power of the test?<br>I.Decrease cost by cluster sampling<br>II.Decrease the confidence level<br>III.Increase the significance level<br>A. II and III<br>B. III only<br>C. I only<br>D. II only<br>E. none of them | <ul> <li>4. When planning a significance test a researcher uses a 0.01 significance level and designs the experiment to have a power of 0.85 assuming a chosen alternative value of the parameter of interest. What is the chance of making a Type II error under those assumptions?</li> <li>A. 1.96</li> <li>B. 0.99</li> <li>C. 0.85</li> <li>D. 0.15</li> <li>E. 0.01</li> </ul>                       |

| 5. | <ul> <li>Match the confidence interval condition I,<br/>II, III, with its corresponding property a, b, c.</li> <li>I.Random selection</li> <li>II.Independent trials</li> <li>III.Large counts</li> <li>I.np &gt; 10</li> <li>II.To prevent the systematic favoring of<br/>certain outcomes</li> <li>III.Requires the population to be at least 10<br/>times the sample size</li> <li>A. I→c, II→b, III→a</li> <li>B. I→b, II→a, III→c</li> <li>C. I→b, II→c, III→a</li> <li>D. I→c, II→a, III→b</li> <li>E. I→a, II→c, III→b</li> </ul> | 6. | While<br>who h<br>contro<br>with H<br>signific<br>value<br>concl<br>A.<br>B.<br>C.<br>D.<br>E. | observing the proportion of people<br>have an undecided opinion on gun<br>ol laws, Jose tested the claim $p < 0.39$<br>to: $p = 0.39$ and H <sub>0</sub> : $p < 0.39$ at a 0.05<br>cance level, and calculated a p-<br>of 0.196. What would be the correct<br>lusion?<br>You can reject the claim.<br>you cannot win 'em all.<br>You can neither accept nor reject<br>the claim.<br>You cannot reject the null<br>hypothesis<br>You can reject the null hypothesis. |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7. | When planning a significance test a<br>researcher uses a 0.0300 significance level<br>and designs the experiment to have a<br>power of 0.73 assuming a chosen<br>alternative value of the parameter of<br>interest. Which of the following can be<br>done to increase the power of the test?                                                                                                                                                                                                                                             | 8. | Assun<br>Unive<br>while<br>Portla<br>unive<br>the pr<br>traditi<br>samp                        | ne the number of undergraduates at<br>rsity of Puget Sound is about 2800,<br>the number of undergraduates at<br>and State is about 21000. At each<br>rsity a SRS of 4% is taken to estimate<br>roportion of students raised in<br>ional two parent homes. The resulting<br>ble proportions were nearly identical.                                                                                                                                                   |  |
|    | I.Decrease cost by cluster sampling<br>II.Decrease the significance level                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | The vo<br>distrib                                                                              | ariability associated with the sampling<br>oution in the                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|    | A. II only<br>B. III only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Α.                                                                                             | Portland State distribution is greater than the University of Puget Sound distribution.                                                                                                                                                                                                                                                                                                                                                                             |  |
|    | C. I and II<br>D. none of them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | В.                                                                                             | University of Puget Sound distribution<br>is greater than the Portland State<br>distribution.                                                                                                                                                                                                                                                                                                                                                                       |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | C.                                                                                             | University of Puget Sound distribution<br>is about the same as the Portland<br>State distribution.                                                                                                                                                                                                                                                                                                                                                                  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | D.                                                                                             | University of Puget Sound distribution<br>is less than the Portland State<br>distribution.                                                                                                                                                                                                                                                                                                                                                                          |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | Ε.                                                                                             | none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

| 9. Jillian is looking for the prop<br>who have a favorable opi<br>food. Diego claims that "TI<br>people having a favorable<br>organic food is not equal t<br>Jillian found a published su<br>randomly selected person<br>people who have a favora | portion of people<br>nion of organic<br>ne proportion of<br>e opinion of<br>to 0.47." then<br>urvey of 199<br>s which found 92<br>able opinion of                                                                                                                                                                                                                             | 10. Kimani is observing the proportion of<br>people who have a trust in government.<br>Jamal claims that "The proportion of<br>people having a trust in government is<br>greater than 0.61." then Kimani found a<br>published survey of 275 randomly selected<br>persons which found 176 people who have<br>a trust in government. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| organic food.<br>Using the results of the surve<br>evaluated Diego's claim c<br>significance level where p<br>of people having a favora<br>organic food.", Ho is p = 0.4<br>0.47.<br>If Jillian calculated a p-val<br>which of the following are  | brganic food.<br>Using the results of the survey, Jillian<br>evaluated Diego's claim at a 4%<br>ignificance level where p is "The proportion<br>of people having a favorable opinion of<br>brganic food.", H <sub>0</sub> is $p = 0.47$ , and H <sub>a</sub> is $p \neq$<br>0.47.<br>I Jillian calculated a p-value of 0.8280,<br>which of the following are true statements: | Using the results of the survey, Kimani<br>evaluated Jamal's claim at a 3%<br>significance level where p is "The<br>proportion of people having a trust in<br>government.", $H_0$ is $p = 0.61$ , and $H_a$ is $p >$<br>0.61.<br>If Kimani calculated a p-value of 0.1539,<br>which of the following are true statements:          |
| I.Jillian cannot accept Di<br>0.04 significance lev<br>II.Jillian was willing to take<br>failing to reject the<br>error.<br>III.Jillian can accept Diego<br>significance level.<br>A. I, II and III<br>B. I only                                  | ego's claim at a<br>/el.<br>a 4% chance of<br>null hypothesis in<br>o's claim at a 0.04                                                                                                                                                                                                                                                                                       | <ul> <li>I.Kimani should accept the null<br/>hypothesis.</li> <li>II.It is possible Kimani may make a type I<br/>error in this situation.</li> <li>III.Kimani's sample data is quantitative.</li> <li>A. I and II</li> <li>B. I only</li> <li>C. none of them</li> <li>D. III only</li> <li>E. I and III</li> </ul>                |
| C. II only<br>D. I and II<br>E. none of them                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                    |

#### Chapter 8, Free Response

 Kalani is looking for the proportion of people who have no military veteran status. Daniella claims that "The proportion of people having no military veteran status is not equal to 0.90." then Kalani found a published survey of 432 randomly selected persons which found a 0.9213 proportion of people who have no military veteran status.

Use the results of the survey Kalani found to evaluate Daniella's claim with a hypothesis test at a 0.04 significance level.

2. Jose is collecting data on the proportion of people who have a moderate or less than a pack/day smoking addiction. Davis claims that "The proportion of people having a moderate or less than a pack/day smoking addiction is not equal to 0.07." then Jose found a published survey of 486 randomly selected persons which found 30 people who have a moderate or less than a pack/day smoking addiction.

Use the results of the survey Jose found to evaluate Davis's claim with a hypothesis test at a 0.02 significance level.

3. Julia is researching the proportion of people who have a first birth order among one's siblings. A survey of 443 randomly selected persons in Julia's city found a 0.4560 proportion of people who have a first birth order among one's siblings. Erik is also observing the proportion of people who have a first birth order among one's siblings. A survey of 115 randomly selected persons in Erik's city found 55 people who have a first birth order among one's siblings.

Use an appropriate hypothesis test to determine if Julia's city population proportion of people with a first birth order among one's siblings is less than Erik's city population proportion at a 0.02 significance level:

#### CPM Stats Assignment, Chapter 9

**Multiple Choice** 

1. Given the following problem:

Aisha is studying potential relationships between one having an optimistic outlook on the economy and a moderate or less than a pack/day smoking addiction. Assume a survey of 502 randomly selected persons revealed the following data:

outlook on the economy



Are the variables outlook on the economy and smoking addiction associated?

What is the value of the chi-square test statistic?

- A. 1.7655
- B. 8.0959
- C. 5.3424
- D. 1.6367
- E. 6.6576

| 2. | Given the following problem:                                                                                                                                                                                                                     |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | Julia is describing potential relationships between one having a first birth order among one's siblings and a pessimistic opinion on the direction of the country. Assume a survey of 200 randomly selected persons revealed the following data: |  |  |
|    | birth order among one's siblings<br>                                                                                                                                                                                                             |  |  |
|    | Are the variables birth order among one's siblings and opinion on the direction of the country associated?                                                                                                                                       |  |  |
|    | Which of the following statements could be used as an alternate hypothesis?                                                                                                                                                                      |  |  |
|    | I.birth order among one's siblings and opinion on the direction of the country are not dependent                                                                                                                                                 |  |  |
|    | II.birth order among one's siblings and opinion on the direction of the country are not<br>independent                                                                                                                                           |  |  |
|    | III.birth order among one's siblings and opinion on the direction of the country are associated                                                                                                                                                  |  |  |
|    | <ul> <li>A. II and III</li> <li>B. I only</li> <li>C. III only</li> <li>D. none of them</li> <li>E. I and II</li> </ul>                                                                                                                          |  |  |

| 3.      | Given the following problem:                                                                                                                                                                                                                     |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | Julia is describing potential relationships between one having a first birth order among one's siblings and a pessimistic opinion on the direction of the country. Assume a survey of 200 randomly selected persons revealed the following data: |  |  |
|         | birth order among one's siblings                                                                                                                                                                                                                 |  |  |
|         |                                                                                                                                                                                                                                                  |  |  |
|         | Are the variables birth order among one's siblings and opinion on the direction of the country associated?                                                                                                                                       |  |  |
| <u></u> | Which of the following statements could be used as an alternate hypothesis?                                                                                                                                                                      |  |  |
|         | I.birth order among one's siblings and opinion on the direction of the country are not                                                                                                                                                           |  |  |
|         | II.birth order among one's siblings and opinion on the direction of the country are not independent                                                                                                                                              |  |  |
|         | III.birth order among one's siblings and opinion on the direction of the country are associated                                                                                                                                                  |  |  |
|         | A. II and III                                                                                                                                                                                                                                    |  |  |
|         | B. I only                                                                                                                                                                                                                                        |  |  |
|         | C. III only                                                                                                                                                                                                                                      |  |  |
|         | D. none of them                                                                                                                                                                                                                                  |  |  |
|         | E. I and II                                                                                                                                                                                                                                      |  |  |



Tonya is describing potential relationships between one having green eye coloring and a rural residential demographic. Assume a survey of 401 randomly selected persons revealed the following data:

| eye coloring |
|--------------|
|--------------|

|     | Ι   | Br  | C | Fr ∣ | B |    |   |
|-----|-----|-----|---|------|---|----|---|
|     |     |     |   |      |   |    |   |
|     | R   | 36  |   | 10   |   | 30 |   |
| R_[ | D S | 46  | - | 13   | 3 | 38 | 3 |
|     | Ul  | 108 |   | 31   |   | 89 |   |
|     |     |     |   |      |   |    |   |

Are the variables eye coloring and residential demographic associated?

Which of the following statements are true about Type I error in this case?

I.Your tolerance for its risk is established with the significance level.

II.It is rejecting the independence of eye coloring and residential demographic when they are actually independent.

III.It is not possible if you accept that eye coloring and residential demographic are associated.

- A. I only
- B. none of them
- C. I and II
- D. III only
- E. I and III



Jose is collecting data on potential relationships between one having a more strict opinion on gun control laws and an undecided opinion of organic food. Assume a survey of 601 randomly selected persons revealed the following data:

opinion on gun control laws

| LS       | UD  | MS  |   |
|----------|-----|-----|---|
|          |     |     |   |
| UF  34   | 31  | 23  |   |
| OFUDI 25 | 73  | 112 | I |
| F  11    | 106 | 186 | • |
|          |     |     |   |

Are the variables opinion on gun control laws and opinion of organic food associated?

Which of the following is an appropriate conclusion at a 0.05 significance level?

- A. At a 5% significance level there is an association between opinion on gun control laws and opinion of organic food.
- B. There is insufficient evidence to show an association between opinion on gun control laws and opinion of organic food.
- C. Accept that opinion on gun control laws and opinion of organic food are not associated.
- D. There is enough evidence to prove opinion on gun control laws and opinion of organic food are not independent.
- E. At a 5% significance level opinion on gun control laws and opinion of organic food are independent.

| 6.       | Given the following problem:                                                                                                                                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | ChocoCorp claims that their delicious chocolate morsels, which come in 5 colors, have the color frequency shown below.                                                                                                                                   |
|          | Red Blue Green Yellow Brown                                                                                                                                                                                                                              |
|          | 24% 24% 23% 15% 14%                                                                                                                                                                                                                                      |
|          | You take a sample of 339 chocolates and record the frequencies as shown below. Assuming your cluster sample is equivalent to a true SRS of the population, do you have sufficient evidence to conclude ChocoCorp's published distribution is inaccurate? |
|          | Sample Data<br>Red Blue Green Yellow Brown                                                                                                                                                                                                               |
|          | /0 01 /3 3/ 30                                                                                                                                                                                                                                           |
| <u>k</u> | What are the degrees of freedom for the chi-square distribution?                                                                                                                                                                                         |
|          | A. 7                                                                                                                                                                                                                                                     |
|          | B. 3                                                                                                                                                                                                                                                     |
|          | C1                                                                                                                                                                                                                                                       |
|          | D. 4<br>F 8                                                                                                                                                                                                                                              |
|          |                                                                                                                                                                                                                                                          |



#### 8. Given the following problem:

-

Camila is looking for potential relationships between one having a pessimistic opinion on the direction of the country and an unfavorable opinion of organic food. Assume a survey of 199 randomly selected persons revealed the following data:

opinion on the direction of

------| pes | opt | |------| UF| 15 | 12 | O\_F UD| 28 | 39 | F| 40 | 65 |

Are the variables opinion on the direction of the country and opinion of organic food associated?

What are the degrees of freedom for the chi-square distribution?

A. 6 B. 5

C. 3

D. 7

E. 2

#### Chapter 9, Free Response

1. The word diamond comes from an ancient Greek word meaning unbreakable. While in South Africa collecting data on various supplies of diamonds, Jacob observed a stratified sample of 64 diamonds which showed the clarity results below.



Are diamond clarities uniformly distributed at a 0.04 significance? Conduct an appropriate statistical test.

2. Pure silicon is used to make semiconductors, which appear in most electronics. Jacob is in California observing natural inventories of silicon wafers. An SRS of 68 wafers produced the decay energy results below.

| mean                               | sd    | low  | ql    | media | n q3  | 3 high  |       |
|------------------------------------|-------|------|-------|-------|-------|---------|-------|
| 1.459                              | 0.276 | 0.82 | 1.265 | 1.49  | 1.654 | 4 2.011 |       |
| 1                                  |       |      |       |       |       |         |       |
| -                                  |       |      | _     |       |       |         |       |
|                                    |       |      |       |       |       |         |       |
| 0.8 -                              | 1.0 - | 1 2  | 7.1   | 1.4 - | 1.6 - | 1.8 -   | 2.0 - |
| silicon wafer decay energies (MeV) |       |      |       |       |       |         |       |

Use the four quartiles as 'bins' to answer the following question: Are silicon wafer decay energies normally distributed at a 0.06 significance? Conduct an appropriate statistical test.

| CPM Stats Assignment, Chapter 10                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |
| <ol> <li>Assume a random sample is taken from a very large population in hopes of performing an inference procedure for the population mean. Consider the following information:         <ol> <li>The population standard deviation is not known</li> <li>The population is distribution shape is not known</li> <li>n ≥ 30</li> </ol> </li> </ol>                                                                                                          | <ul> <li>2. How does doubling the sample size change the width of a confidence interval?</li> <li>a. It divides the interval width by √2</li> <li>b. It multiplies the interval width by √3</li> <li>c. It divides the interval width by 2</li> <li>d. It divides the interval width by √3</li> <li>e. It multiplies the interval width by √2</li> </ul> |
| If your intent is to perform the most<br>powerful test available, which of the<br>following represents your best next step?                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>A. Make a boxplot or histogram of the sample data looking for strong skew or influential outliers. Then use the t-distribution if appropriate.</li> <li>B. Calculate the r-squared and consider the strength of the linear relationship.</li> <li>C. Continue sampling until n ≥ 30 and use the z-distribution.</li> <li>D. Continue the analysis using the z-distribution.</li> <li>E. Continue the analysis using the t-distribution.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                          |
| 3. A sample of size 37 was taken from a large population where $\overline{x} = 152.0$ , s = 65.77 and a margin of error for the population mean of ± 21.9 tons were calculated. What confidence level was used?                                                                                                                                                                                                                                             | 4. Given a sample mean of 547.6 picojoules, a sample standard deviation of 83.81 picojoules, a sample size of 28 and a 93% confidence level, what is the appropriate confidence interval?                                                                                                                                                                |
| a. 93<br>b. 97<br>c. 95<br>d. 99<br>e. 91                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>a. (511.31 &lt; µ &lt; 583.89) picojoules</li> <li>b. (519.75 &lt; µ &lt; 575.45) picojoules</li> <li>c. (515.10 &lt; µ &lt; 580.10) picojoules</li> <li>d. (503.72 &lt; µ &lt; 591.48) picojoules</li> <li>e. (517.72 &lt; µ &lt; 577.48) picojoules</li> </ul>                                                                                |

| 5.<br>a.<br>b. | A finite sample of size n is to be taken from a<br>large population and a confidence interval<br>for the population mean calculated. In<br>general, which situation will yield the largest<br>margin of error?<br>a larger confidence level using the z statistic<br>a smaller confidence level using the z | б.<br>а. | The following<br>means was of<br>distributed per<br>deviation of 1<br>C.I. = (40.18 <<br>What was the<br>34 | y 90% confidence interval of<br>calculated from a Normally<br>opulation with a standard<br>2.34:<br>< μ < 41.82)<br>e approximate sample size? |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                | statistic                                                                                                                                                                                                                                                                                                   | b.       | 22                                                                                                          |                                                                                                                                                |
| C.             | it is not possible to know without the sample size                                                                                                                                                                                                                                                          | c.<br>d  | 29<br>25                                                                                                    |                                                                                                                                                |
| d.             | a larger confidence level using the t statistic                                                                                                                                                                                                                                                             | и.<br>е. | 44                                                                                                          |                                                                                                                                                |
| e.             | a smaller confidence level using the t statistic                                                                                                                                                                                                                                                            |          |                                                                                                             |                                                                                                                                                |
| 7.<br>a.<br>b. | Which of the following formulas best<br>represents the standard error of a sample<br>mean?<br>$\frac{\overline{x}-\mu}{s/\sqrt{n}}$                                                                                                                                                                         | 8.       | Deion is inves<br>of steel carbo<br>92% confider<br>1.0991 %. Wh<br>are FALSE?                              | stigating the population mean<br>on contents and calculated a<br>nce interval from 0.8161 to<br>ich of the following statements                |
| с.             | $\frac{\hat{p}-p}{\sqrt{p(1-p)/n}}$ $\frac{\hat{p}(1-\hat{p})}{\hat{p}(1-\hat{p})}$                                                                                                                                                                                                                         |          | ι.                                                                                                          | contents are between 0.8161<br>and 1.0991 %.                                                                                                   |
| d.<br>e.       | $\sqrt{\frac{1}{n}} Z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$                                                                                                                                                                                                                                                |          | ii.                                                                                                         | If another sample were taken,<br>there is a 92% chance the<br>interval would contain 0.9576                                                    |
|                |                                                                                                                                                                                                                                                                                                             |          | iii.                                                                                                        | If Deion were to repeat this<br>sampling process many-many<br>times, this method would<br>capture the true mean 92% of<br>the time.            |
|                |                                                                                                                                                                                                                                                                                                             | a.       | I only                                                                                                      |                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                             | b.       | none of then                                                                                                | n                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                             | d.       | l and II                                                                                                    |                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                             | e.       | II and III                                                                                                  |                                                                                                                                                |

| I                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i. The t-distribution is not used<br>with inference of proportions.<br>ii. If the population standard<br>deviation is unknown, you may<br>not use the z-distribution for<br>tests of means.<br>iii. The CRITICAL t statistic for<br>confidence interval procedures<br>is $t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$ .<br>A. none of them<br>B. I, II and III<br>C. III only<br>D. I and III<br>E. I and II | It is only possible if you accept the<br>alternate hypothesis<br>It is much less common than a Type II<br>error<br>It is not possible to calculate without an<br>additional assumed value of the<br>parameter<br>A. I, II and III<br>B. I and II<br>C. I only<br>D. II only<br>E. III only |

#### Chapter 10, Free Response

- 1. While working at her brother's pizzeria investigating the making of combination pizzas, Aisha observed that the distribution of pizza amount of meats are normally distributed with a mean of 12.81 ounces and a standard deviation of 2.4 ounces.
- a. Sketch the Normal probability density function. What is the probability of selecting a single combination pizza amount of meat less than 15.21 ounces?
- b. In a sample of 14 combination pizzas, what is the probability that exactly 12 are less than 15.21 ounces?
- c. What is the probability of selecting a sample of 14 combination pizzas with a mean amount of meat less than 15.21 ounces?
  - 2. Aisha is working at her father's gym describing the level of fitness of the members. Aisha believes the distribution of member standing broad jump distances are normally distributed with a mean of 89.4 cm and a standard deviation of 18.13 cm.
- a. Sketch the Normal probability density function. What is the probability of selecting a single the member standing broad jump distance less than 103 cm?
- b. In a sample of 14 the members, what is the probability that more than 8 are less than 103 cm?
- c. What is the probability of selecting a sample of 14 the members with a mean standing broad jump distance less than 103 cm?
- 3. Hurricanes in the southern hemisphere rotate clockwise while hurricanes in the northern hemisphere rotate counterclockwise. Jacob is in Florida studying toxic deposits of hurricanes. An SRS of 33 hurricanes gave the radius results below.

sample mean = 448.6, s = 61.04 (kilometers)

Alexis claims that "The mean hurricane radius is greater than 438.26 kilometers."

Use the data to evaluate Alexis's claim at a 0.10 significance level.