Mathematics

Calculus

Letter to Families from the DPSCD Office of Mathematics

Dear DPSCD Families,

The Office of Mathematics is partnering with families to support Distance Learning while students are home. We empower you to utilize the resources provided to foster a deeper understanding of gradelevel mathematics.

In this packet, you will find links to videos, links to online practice, and pencil-and-paper practice problems. The Table of Contents shows day-by-day lessons from April 14th to June 19th. We encourage you to take every advantage of the material in this packet.

Daily lesson guidance can be found in the table of contents below. Each day has been designed to provide you access to materials from Khan Academy and the academic packet. Each lesson has this structure:

Watch: Khan Academy (if internet access is available)	Practice: Khan Academy (if internet access is available)	Pencil & Paper Practice: Academic Packet
Watch and take notes on the lesson video on Khan Academy	Complete the practice exercises on Khan Academy	Complete the pencil and paper practice.

If one-on-one, live support is required, please feel free to call the **Homework Hotline** at 1-833-466-3978. Please check the <u>Homework Hotline page</u> for operating hours. We have DPSCD mathematics teachers standing by and are ready to assist.

We appreciate your continued dedication, support and partnership with Detroit Public Schools Community District and with your assistance we can press forward with our priority: Outstanding Achievement. Be safe. Be well!

Deputy Executive Director of K-12 Mathematics

Important Links and Information

Clever

Students access Clever by visiting <u>www.clever.com/in/dpscd.</u>

What are my username and password for Clever?

Students access Clever using their DPSCD login credentials. Usernames and passwords follow this structure:

Username: studentID@thedps.org

Ex. If Aretha Franklin is a DPSCD student with a student ID of 018765 her username would be 018765@thedps.org.

Password:

First letter of first name in upper case First letter of last name in lower case 2-digit month of birth 2-digit year of birth 01 (male) or 02 (female) For example: If Aretha Franklin's birthday is March 25, 1998, her password and password would be Af039802.

Accessing Khan Academy

To access Khan Academy, visit <u>www.clever.com/in/dpscd.</u> Once logged into Clever, select the Khan Academy button:

Khan Academy 🕕

Accessing Your CPM eBook

Students can access their CPM eBook in two ways:

Option 1: Access the eBook through <u>Clever</u>

- 1. Visit <u>www.clever.com/in/dpscd.</u> Login using your DPSCD credentials above.
- 2. Click on the CPM icon:

Option 2: Visit http://open-ebooks.cpm.org/

- 1. Visit the website listed above.
- 2. Click "I agree"
- 3. Select the CPM Calculus eBook:

Desmos Online Graphing Calculator

Access to a free online graphing and scientific calculator can be found at <u>https://www.desmos.com/calculator</u>.

Table of Contents

In the following table, you will find the table of contents and schedule for the week of April 13, 2020 through the week of June 15, 2020.

Week	Date	Торіс	Watch (10 minutes)	Online Practice (10 minutes)	Pencil & Paper Practice (25 minutes)
	Day1	Holiday	N/A	N/A	N/A
	Day 2	4.1.1 Definite Integrals – Area Under the Curve	Khan Academy Properties of Definite Integrals	Khan Academy Properties of Definite Integrals	Problems 1 - 4
Week of 04/13- 04/17	Day 3	4.1.2 Properties of Definite Integrals	Khan Academy Properties of Definite Integrals	Khan Academy Properties of Definite Integrals	
	Day 4	Lesson 4.1.3: More Properties of Definite Integrals	Khan Academy Properties of Definite Integrals	Khan Academy Properties of Definite Integrals	
	Day 5	Lesson 4.2.1: Deriving "Area" Functions	Khan Academy Exploring Accumulations of Change	Khan Academy Exploring Accumulations of Change	Problems 1 - 4

Week of 4/20- 4/24	Day 1 Day 2	Lesson 4.2.2: Indefinite and Definite Integrals	Ihe Fundamental Iheorem of Calculus and Accumulation Functions	The Fundamental Theorem of Calculus and Accumulation Functions Functions Khan Academy Integration Quiz 1	
	Day 3	Lesson 4.2.3: The Fundamental Theorem of Calculus	The Fundamental Theorem of Calculus and Accumulation Functions Functions Functions Functions	The Fundamental Theorem of Calculus and Accumulation Functions	Problems 1 - 4
	Day 4	Lesson 4.2.4: The Fundamental Theorem of Calculus	The Fundamental Theorem of Calculus and Accumulation Functions Functions Functions	The Fundamental Theorem of Calculus and Accumulation Functions	
	Day 5	Lesson 4.2.5: Integrals as Accumulators	The Fundamental Theorem of Calculus and Accumulation Functions	The Fundamental Theorem of Calculus and Accumulation Functions	Problems 1 - 4

	Day 1	Lesson 4.4.1:	Khan Academy Area	<u>Khan Academy Area</u>	
		Area between	between Curves	between Curves Expressed as	
		Curves	Expressed as Functions of x	<u>Functions of x</u>	
			indexan	同内認みな 同	
Week					
of					
O					
4/07			Elitaren Karalaren Arran		
4/27-			Khan Academy Area between Curves	Khan Academy Area between Curves Expressed as	
05/01			Expressed as Functions	<u>Functions of y</u>	
			<u>of y</u>		
				LEIP250KBS-M/	
			Khan Academy Finding Area between Two	Khan Academy Finding Area	
			<u>Curves that Intersect at</u>	between Two Curves that Intersect at Multiple Points	
			Multiple Points		
			CERTIFICATION CONTRACTOR		
	Day 2	Lesson 4.4.2:	Khan Academy Area	Khan Academy Area	
		More Area	between Curves	between Curves Expressed as	
		between Curves	Expressed as Functions of x	<u>Functions of x</u>	
		Curves		E3:393,395 (E3)	
				Khan Academy Area	
			Khan Academy Area	between Curves Expressed as	
			between Curves Expressed as Functions	<u>Functions of y</u>	
			of y		
			A		
			LEIF220655m/	Khan Academy Finding Area	
			Khan Academy Finding	between Two Curves that	
			Area between Two Curves that Intersect at	Intersect at Multiple Points	
			<u>Multiple Points</u>		
			6-25-66-91-93-6 10-26-74-06-2-03-		
			TELLA CONTROL (C	LELINGGREAD-STIC	

Printed math problems in this packet come from the CPM Educational Program. Open eBook access is available at http://open-ebooks.cpm.org/. © 2009, 2014 CPM Educational Program. All rights reserved.

· · · · · · · · · · · · · · · · · · ·	_				
	Day 3	Lesson 4.4.3:	Khan Academy Area	Khan Academy Area	
		Multiple	between Curves	between Curves Expressed as	
		Methods for	Expressed as Functions	<u>Functions of x</u>	
		Calculating	<u>of x</u>		
		Area between	间药烧烧等间	<u>ത്രക്കാന</u> ത	
		Curves			
			2 ST 1998 1781		
				2000 - 2000 - 2000 2000 - 2000 - 2000	
			いつからてきません 自反応 きんちゅう	首次北京 199	
			<u>Khan Academy Area</u>	Khan Academy Area	
			<u>between Curves</u>	between Curves Expressed as	
			Expressed as Functions	<u>Functions of y</u>	
			<u>of y</u>		
			8396 726	6379 6/216	
				2019年3月26日4月21日 1917年3月21日 - 1918年3月21日 1917年3月21日 - 1918年3月21日	
			Khan Academy Finding Area	Khan Academy Finding Area	
			between Two Curves that	between Two Curves that	
			Intersect at Multiple Points	Intersect at Multiple Points	
				12200000000000000000000000000000000000	
			Entry Control of the		
	Day 4	Chapter 4	Integration as	Integration as Accumulation	Chap 4 Review
		Closure	Accumulation and	and Change Quiz 2	
		003010	Change Quiz 2		
				തരാജന	
			間になる		
			Integration as	Integration as Accumulation	
			Accumulation and	and Change Quiz 3	
			Change Quiz 3	and Change Quiz 3	
			TRUSCALLO		
				4234723794280 7775474289144.00	
				画が認識	
	Day 5	Lesson 5.1.1:	<u>Khan Academy</u>	Khan Academy Position,	Problems 1 - 4
		Distance,	Position, Velocity and	Velocity and Acceleration	
		Velocity, and	<u>Acceleration</u>		
		Acceleration	国新国家部国	国务研究体 国	
		Functions			
			Khan Academy Connecting Position, Velocity, and	Khan Academy Connecting	
			Acceleration	Position, Velocity, and	
				Acceleration	
				LEIDERTHEST?	
		1	1		

Printed math problems in this packet come from the CPM Educational Program. Open eBook access is available at <u>http://open-ebooks.cpm.org/</u>. © 2009, 2014 CPM Educational Program. All rights reserved.

	Day 1	Lesson 5.1.2:	Khan Academy Solving	Khan Academy Solving	Problems 1 - 4
Week of	Ddy I	Optimization	Optimization Problems	Optimization Problems	FIODIems I - 4
05/04- 05/08	Day 2	Lesson 5.1.3: Using First and Second Derivatives	Khan Academy Using the First Derivative Test	Khan Academy Using the First Derivative Test Khan Academy Using the Second Derivative Test	Problems 1 - 4
	Day 3	Lesson 5.1.4: Using the First and Second Derivative Tests	Khan Academy Using the First Derivative Test	Khan Academy Using the First Derivative Test	
	Day 4	Lesson 5.2.1: The Product Rule	Khan Academy Product Rule	Khan Academy Product Rule	
	Day 5	Lesson 5.2.2: The Chain Rule and Application (Part I)	The Chain Rule: Introduction	The Chain Rule: Introduction	Problems 1 - 4

			The Chain Dula	The Chain Dulet later due to	
	Day 1	Lesson 5.2.3: The Chain Rule	The Chain Rule: Introduction	The Chain Rule: Introduction	
		and			
		Application			
		(Part II)			
Week		(1 0)	THE COMPANY		
			回避波理	画都混躍	
of					
	Day 2	Lesson 5.2.4:	The Quotient Rule	The Quotient Rule	Problems 1 - 4
05/11-		The Quotient			
05/15		Rule	99.78.845		
00/10					
	Day 3	Lesson 5.2.5:	Trigonometric	<u>Trigonometric Derivatives</u>	
	Dayo	More	<u>Derivatives</u>	ingonomenie benvanves	
		Trigonometric			
		Derivatives		三次第76月1日 	
				e souses	
	Day 4	Lesson 5.4.1:	Finding the Derivative	Finding the Derivative with	
		Chain Rule	with Fundamental	Fundamental Theorem of	
		Extension of the	Theorem of Calculus:	<u>Calculus: Chain Rule</u>	
		Fundamental Theorem of	<u>Chain Rule</u>		
		Calculus			
		Calcolos			
			国政会议的法律		
	Day 5	Lesson 5.5.1:	Using L'Hospital's Rule	Using L'Hospital's Rule	
	,	Evaluating			
		Limits of	2010 100 100 100 100 100 100 100 100 100		
		Indeterminate			
		Forms			
	Day 1	Lesson 5.5.2:	Using L'Hospital's Rule	Using L'Hospital's Rule	
	2 0.7	L'Hospital's			
		Rule			
Week					
of	Day 2	Chapter 5	Ch	apter 5 Review Problems 1 - 20	
	, <u>_</u> _	Closure			
05/30					
05/18-	Day 3	Lesson 6.1.1:	Derivative of Natural	Derivative of Natural Base	Problems 1 - 4
05/22		Exponential	Base Functions e ^x	<u>Functions</u>	
		Functions	■第55-355 73-35-35-35 73-35-35-35-35		
				10.00	
			回行旁边地名		

	_				
	Day 4	Lesson 6.1.2: Derivatives of Exponential Functions	Derivatives of Exponential Functions	Derivatives of Exponential Functions	
	Day 5	Lesson 6.1.3: Derivatives Using Multiple Tools	Selecting a Differentiation Strategy	Selecting a Differentiation Strategy	
			Selecting procedures for calculating derivatives	Selecting procedures for calculating derivatives	
Week	Day 1	Lesson 6.1.4: Integration of Exponential Functions	Selecting a Differentiation Strategy	Selecting a Differentiation Strategy	Problems 1 - 4
of 05/25- 05/29			Selecting procedures for calculating derivatives	Selecting procedures for calculating derivatives	
	Day 2	Lesson 6.2.1: Implicit Differentiation	Implicit Differentiation	Implicit Differentiation	
	Day 3	Lesson 6.2.2: Implicit Differentiation Practice	Implicit Differentiation	Implicit Differentiation	
	Day 4	Lesson 6.3.1: Inverse Trigonometric Derivatives	Inverse Trigonometric Derivatives	Inverse Trigonometric Derivatives	Problems 1 - 4

	Day 5	Lesson 6.3.2: Derivatives of Natural Logarithms	Derivative of In(x)	Derivative of In(x)	
Week	Day 1	Lesson 6.3.3: Derivatives of Inverse Functions	Derivatives of Inverse Functions	Derivatives of Inverse Functions	
06/01- 06/05	Day 2	Lesson 6.4.1: Mean Value	Using the Mean Value Theorem	Using the Mean Value Theorem	Problems 1 - 4
	Day 3	Lesson 6.4.2: Mean Value Theorem	Using the Mean Value Theorem	Using the Mean Value Theorem	
	Day 4	Lesson 6.4.3: Mean Value Theorem Applications	Using the Mean Value Theorem	Using the Mean Value Theorem	
	Day 5	Chapter 6 Closure		Chapter 6 Review	
Week	Day 1	Lesson 7.1.1: Related Rates Introduction	Related Rates - Equations	Related Rates - Equations	Problems 1 - 4
of 06/08- 06/12	Day 2	Lesson 7.1.2: Related Rates Applications – Pythagorean Theorem	Related Rates Application - Pythagorean Theorem	Related Rates Application - Pythagorean Theorem	

			Dilit ID I		
	Day 3	Lesson 7.1.3: Related Rates Applications – Similar Triangles	Related Rates Applications - Similar <u>Triangles</u>	Related Rates Applications - <u>Multiple Rates</u>	
	Day 4	Lesson 7.1.4: Related Rates Applications – Choosing the Best Formula	Solving Related Rates Problems	Solving Related Rates Problems	
	Day 5	Lesson 7.1.5: Related Rates Applications - Trigonometry	Related Rates Applications - Trigonometry	Related Rates Applications - Trigonometry	
Week	Day 1	Lesson 7.2.1: Undoing Chain Rule	Integration Using Substitution	Integration Using Substitution	
of 06/15- 06/19	Day 2	Lesson 7.2.2: Integration with U-Substitution	Integration Using Substitution	Integration Using Substitution	Problems 1 - 4
	Day 3	Lesson 7.2.3: Definite Integrals with U- Substitution	Integration Using Substitution	Integration Using Substitution	
	Day 4	Lesson 7.2.4: Varied Integration Techniques	Integration Using Substitution	Integration Using Substitution	
	Day 5	U-Substitution Review	Integration Using Substitution	Integration Using Substitution	

1. Find
$$f'(x)$$
 if $f(x) = 6x^2 - \frac{5}{x} + \frac{2}{\sqrt[3]{x^2}}$.

2. Is f(x) differentiable at x = 2? Why or why not?

$$f(x) = \begin{cases} -x^2 - 3 & \text{for } x \le 2\\ (x - 4)^2 - 3 & \text{for } x > 2 \end{cases}$$

- 3. Evaluate: $\int_{1}^{5} (3x^2 3x + 1)dx$
- 4. Write each integral expression as a single integral.

a.
$$\int_{7}^{3} f(x)dx + \int_{3}^{9} f(x)dx$$
 b. $\int_{a}^{c} f(x)dx - \int_{b}^{c} f(x)dx$ $(a < b < c)$

For use after Lesson 4.2.3

1. Find
$$f'(x)$$
 if $f(x) = \frac{x^5 - 2x^2 + \frac{1}{3}x - 4}{x^2}$.

2. If
$$\int_{2}^{5} f(x)dx = 10$$
, find:
a. $\int_{1}^{4} f(x-1)dx$
b. $\int_{0}^{3} (f(x+2)+3)dx$
c. $\int_{6}^{3} f(x-1)dx$
d. $\int_{2}^{2} f(x)dx$
3. If $\int_{0}^{x} g(t)dt = 3x^{2} - 2x$, find:

a.
$$2\int_{0}^{4} g(t)dt = 5x^{2} - 2x$$
, find.
b. $\int_{-2}^{0} g(t)dt$ c. $\int_{-3}^{5} g(t)dt$

4. Integrate.

a.
$$\int 4\sin(x-2)dx$$
 b. $\int \left(\frac{3}{4}x^3 - 5\sqrt{x} + \pi\right)dx$

Lesson 4.3.1 - 4.3.2

For use after Lesson 4.3.2

- 1. Find: $f'\left(\int_{6}^{1} f(x)dx\right)$
- 2. Integrate: $\int f'(x)dx$
- 3. If $\int_{1}^{6} f(x) dx = 50$, find:
 - $a. \quad \int_3^8 (f(x-2)+2) dx$

b. $\int_{-1}^{4} f(x+3)dx$ c. $\int_{6}^{1} (f(x)+4)dx$

- 4. Find:
 - a. $\frac{d}{dx} \int \frac{2^x}{\cos(3x-1)} dx$ b. $\int_0^x \frac{d}{dx} (2^x \sqrt{x^2 3x + 1}) dx$

Printed math problems in this packet come from the CPM Educational Program. Open eBook access is available at http://open-ebooks.cpm.org/. © 2009, 2014 CPM Educational Program. All rights reserved.

Lesson 4.4.1 – 4.4.2 For use after Lesson 4.4.2

1. Write an integral representing the shaded area shown on the graph at right from x = -1 to x = 4.

- 2. Write an integral representing the shaded area shown on the graph at right from x = -2 to x = 2.
- 3. Find the area of the region bounded by the graphs of $y = (x+2)^2 1$ and y = -x+3.
- 4. Find: a. $\int_{-1}^{x} \frac{d}{dx} (x^2 x) dx$ b. $\frac{d}{dx} \int (x\sqrt{x^2 3}) dx$

Calculus Chapter 4: Review

No Calculator

- 1. Write a Riemann sum using 3 left endpoint rectangles under the curve $y = 2^x + x^2 + 1$ from x = 3 to x = 4. Use sigma notation. How could you modify this answer to get an exact answer?
- 2. Find the slope functions, f'(x), for the following functions.
 - a. $f(x) = 6\sqrt[4]{x^3} \sqrt{\pi^5}$ b. $f(x) = \frac{1}{2}x^5 + \frac{1}{3}x^4 - \frac{3}{4}x$
- 3. Does $\int_{a}^{b} f(x)dx = \int_{a-c}^{b-c} (f(x-c))dx$? Explain clearly why it is or is not a true statement.
- 4. Evaluate: $\int_{-1}^{1} (3z^2 z + 1) dz$
- 5. Evaluate: $\int_6^{11} \sqrt{2} \, dx$
- 6. Integrate: $\int \frac{x^2 x 20}{x 5} dx$
- 7. What is the difference in area between $\int_{5}^{11} f(x)dx$ and $\int_{5}^{11} (f(x)+10)dx$?
- 8. What is the Fundamental Theorem of Calculus, Part I?
- 9. What is the Fundamental Theorem of Calculus, Part 2?
- 10. A shoe falls off a rock climber at 500 feet. If the velocity of the shoe is v(t) = -8t 10 feet per second, what is the velocity after 1 second? Where is the barrel after 10 seconds? Where is the barrel after t seconds?
- 11. Find: $\frac{d}{dx} \int_{5}^{x} (3x+1)^{3} dx$
- 12. Find: $\int_{-1}^{x} \frac{d}{dx} (2x x^2) dx$
- 13. Find: $\frac{d}{dx} \int_0^1 (\cos(3x+1)\sqrt{x}) \, dx$

For problems 14 and 15: Graph the region, show a typical rectangle, then write and evaluate the integral.

- 14. Find the area of the region bounded by the graphs of $y = \sqrt{x} + 2$, x = 0, y = -1, and x = 4
- 15. Find the area of the region bounded by the graphs of $y = (x+2)^2$, y = 4 + x, and y = 0.

- 16. Find f'(x) if $f(x) = 2\sqrt{\pi}$.
- 17. Evaluate: $\int_{4}^{-2} |x-2| dx$
- 18. Write an integral representing the shaded area shown on the graph at right from x = 0 to x = 4.
- 19. Write an integral representing the shaded area shown on the graph at right from x = -3 to x = 4.

Calculator

- 20. a. On your paper, sketch the function $f(x) = 5 \cos x x$. Let $x_1 = 4$, and generate a sequence of x-values to approximate the root using Newton's Method. State what happens and <u>why</u>, using your sketch and showing the progression of x-values.
 - b. Explain why x_1 needs to be "reasonably" close to the root. Create your own example of a function and a poor choice of x_1 which will fail to lead to the desired root.

Lesson 5.1.1 - 5.1.2

For use after Lesson 5.1.2

- 1. Use Newton's Method to find the root of $f(x) = 4x^3 2x^2 + 3x 1$ on the interval [0,1], accurate to 3 decimal places. Let $x_1 = 0.5$.
- 2. A ball is thrown straight up in the air from a height of 4 feet with an initial velocity of 30 feet per second. Remember that acceleration due to gravity is -32 ft/sec².
 - a. Find equations for h(t), v(t), and a(t).
 - b. What is the maximum height that the ball reaches?
 - c. What is the maximum speed of the ball?
- 3. Find the first and second derivative of $f(x) = \frac{-2}{\sqrt[3]{x^5}} 5\sin(x+1) + \frac{4}{7}x^9$

Lesson 5.2.1

For use after Lesson 5.2.1

1. Let $f(x) = x^3 - 3x - 2$.

a. State the intervals on which the function is increasing and decreasing.

b. State the intervals on which the function is concave up and concave down.

- c. Find the coordinates of all maxima, minima, and points of inflection.
- d. Sketch a graph of the function.
- 2. Simplify and factor: $\frac{(7y-2)^{-3}(2y+1)^{2/3} + (7y-2)^{-2}(2y+1)^{-1/3}}{(7y-2)^{-1}(2y+1)^{1/3}}$
- 3. If the graph of $y = \frac{px+q}{x+r}$ has a vertical asymptote at x = -4, a horizontal asymptote at y = 2, and a root at x = -5, then p+q+r=?

Lesson 5.2.2 - 5.2.4

For use after Lesson 5.2.4

- 1. Find $\frac{dy}{dx}$. a. $y = (x+5)^2 + 6(x-4)(x+3)$ b. $y = 2x\sqrt{2x+1}$ c. $(3x^2 - 1)(2x^{-4} + x)$ d. $y = \frac{x^3}{x^2 + 1}$
- 2. Evaluate.
 - **a.** $\int_{2}^{5} (x^2 \pi x^2) dx$ **b.** $\int_{0}^{\pi/3} (\sin x + \cos x) dx$
- 3. A rectangular plot of land will be bounded on one side by a river and on the other three sides by an electric fence. If 800 meters of wire are available to build the fence, what is the largest area that can be enclosed?

Lesson 5.3.1 - 5.3.2

For use after Lesson 5.3.2

- 1. Differentiate.
 - a. $\frac{d}{dx} \left(\frac{2x^{4/3}}{\cos^2 x} \right)$ b. $\frac{d}{df} \left(3\sqrt{f} \sin(2f) + \frac{1}{\pi} \right)$ c. $\frac{d}{dg} \left(\tan(\sin(g+1)) \right)$ d. $\frac{d}{dh} \left(h \sec h^2 \right)$
- 2. A point moves linearly such that a(t) = 12t 14. If the known conditions are v(0) = 8 and s(1) = 15, find an equation for s(t).
- 3. Amelia is going to make a kite out of a wooden dowel that is 10 feet long. How should she cut the dowel so that she makes a kite with the largest possible area?

Note: The wooden dowel is shown by the solid lines in the diagram at right.

Calculus Chapter 5: Review

No Calculator

- 1. Find f'(x) for each function of a product.
 - a. f(x) = (7x+10)(2x+3)
 - b. $f(x) = (3x-2)\sqrt{x+5}$
 - c. $f(x) = (5x+1)(4x^2+3x-9)$
- 2. Find f'(x) for each function.

a.
$$f(x) = (x^5 + 1)^2$$

b.
$$f(x) = \sqrt[3]{x^2 - 2x + 1}$$

c.
$$f(x) = \sin^2(5x - \sqrt{x})$$

3. For $y = x^3 - 2x^2 + x - 1$, find the first and second derivatives, then use them to find the maxima and minima on the interval [0, 4].

- 4. Use the graph of f'(x) at right to determine the intervals where f(x) is increasing, decreasing, concave up, and concave down.
- 5. Find the area between the curves $y = 2 \sin x$ and $y = \frac{1}{2}x(x - \pi)$ on the interval $[0, 2\pi]$.
- Find f'(x) for each function. 6.

a.
$$f(x) = \frac{(3x^2 - x)^2}{\frac{1}{2}\cos x}$$
 b. $f(x) = \frac{\sin x}{3(2x-1)^2}$

Integrate. $\overline{4}^{\cos x}$ 7.

8.

b. $\int_0^1 t^2 \left(\sqrt{t} - \sqrt[3]{t}\right) dt$ $\mathsf{Q.} \quad \int \frac{5x^5 - x^3 + 2x^2 - 1}{x^5} \, dx$ Find:

a.
$$\frac{d}{dx} \int_{5}^{x} (3x+1)^3 dx$$
 b. $\int_{-1}^{x} \frac{d}{dx} (x^2 - x) dx$

- 9. Sketch a graph that satisfies the following conditions:
- f''(2) < 0f'(2) = 0f(2) = -110. Let $f(x) = -x^3 + 3x - 2$.
 - Find all open intervals on which f(x) is increasing and decreasing. a.
 - Find all open intervals on which f(x) is concave up and concave down. b.
 - Find the coordinates of all maximum, minimum, and point of inflection. C.
 - Use the information you found in parts (a) (c) to sketch a graph of the function. d.
- 11. Simplify.
 - $-2.5^{\log_5 13}$ а.

- b. $\log\left(\log_7\left(\log_3 3^7\right)\right)$
- 12. Find the inverse of each function.
 - a. $f(x) = 4 \log_3(x-1) + 9$
- 13. Find the derivative of each function.
 - a. $f(x) = -7 \sec(x-1)$
 - $f(x) = 2x \csc 3x$ C.
- 14. Evaluate each limit.

Q.
$$\lim_{x \to 4} \frac{-\sin(\pi x)}{x-4}$$
b.
$$\lim_{x \to 0} \frac{\sin x^2}{x^2}$$
C.
$$\lim_{x \to \infty} \frac{\sin x}{x}$$
d.
$$\lim_{x \to 0} \frac{x}{\tan x}$$

- 15. Write an equation to match the properties of the given function.
- Printed math problems in this packet come from the CPM Educational Program. Open eBook access is available at http://open-ebooks.cpm.org/. © 2009, 2014 CPM Educational Program. All rights reserved.

- b. $f(x) = -5 \cdot 3^{x+1} 2$
- b. $f(x) = 6 \tan x \sqrt{x+1}$
- d. $f(x) = 5(x-1)\cot^{-3} x$
- $x \to 0 \frac{1}{\tan 3x}$

- a. The function has a hole at x = 4, a horizontal asymptote at y = 2, and a vertical asymptote at x = -1.
- b. The function that is graphed at right.

Calculator Okay

- 16. A store has been selling skateboards at the price of \$40 per board, and at this price, skaters have been buying 50 boards a month. The owner of the store wishes to raise the price and estimates that for each \$1 increase in price, 3 fewer boards will be sold each month. If each board costs the store \$25, at what price should the store sell the boards in order to maximize profit?
- 17. Jane is 2 miles offshore in a boat and wishes to reach a coastal village 6 miles down a straight shoreline from the point nearest the boat. Due to the current, she can row her boat at 3 mph. She can walk at 4 mph. Where should she land her boat to reach the village in the least amount of time?
- 18. The height of an object thrown vertically is given by $s(t) = -16t^2 + 100t + 200$. Height is in meters and time is in seconds.
 - a. What is the maximum height that the object reaches?
 - b. What is the velocity of the object when t = 2?
 - c. What is the velocity of the object when it hits the ground?
- 19. Aimee got a home loan of \$250,000 with a 7.5% interest rate, compounded daily.
 - a. How much interest will she owe at the end of the first month (30 days)?
 - b. What is the annual percentage rate of her loan? (See problem 5-133 for help.)
- 20. Ms. Ligsay tossed a piece of chalk to Kwin, who was about to give a presentation. The velocity of the chalk with respect to the ground was v(t) = -32t + 10 feet/sec.
 - a. When was the velocity of the chalk zero? What was happening to the chalk at that time?
 - b. Find a(t).
 - c. If $s(0) = 5\frac{1}{3}$, find a function that represents the position of the chalk, s(t).
 - d. Find the time, *t*, at which Kwin caught the chalk when it was 6 feet off of the ground.

b. $\lim_{x\to\infty}\left(\frac{x^2}{e^x}\right)$

- 4. A certain population of bacteria begins with 20 orgaisms. After 20 minutes there are 80 organisms.
 - a. What is the percent increase?
 - b. Assuming exponential growth, find an equation to model the population of this particular bacteria at any time, *t*.
 - c. How fast, in oragnisms/minute, is the population of bacteria increasing when t = 2 hours?

Lesson 6.1.1 – 6.1.3 For use after Lesson 6.1.3

- 1. Integrate.
 - a. $\int (5x^{-2/3} 2x + 5)dx$ b. $\int x^2 \sec^2(5x^3)dx$
- 2. Differentiate.
 - a. $\frac{d}{dx} \left(4x^{3/4} \frac{1}{2} (\sin 3x)^{-2/3} \right)$ b. $\frac{d}{dx} \left(\sqrt[4]{6x 1} 7 \cdot 3^x \right)$
- 3. Evaluate.

 $\Box \cdot \lim_{x \to 1} \left(\frac{x^6 - 1}{1 - x^3} \right)$

Lesson 6.2.1 – 6.2.2

For use after Lesson 6.2.2

1. Integrate.

a.	$\int (\sin 2x) e^{\cos 2x} dx$	b.	$\int 2^{3x} dx$

2. Find y'.

3.

- a. $y = \sqrt[3]{(\tan 5x)^4 + \sqrt{x}}$ Evaluate each limit. b. $2xy + x^2 - y^2 = y$
- a. $\lim_{x \to 0} \frac{xe^x}{e^x 1}$ b. $\lim_{x \to 2} \frac{J_4 \sqrt{1 + t} dt}{x 4}$ 4. If $x^2 + y^2 = 25$, find the point(s) where the slope of the tangent line is $-\frac{3}{4}$.

Lesson 6.3.1 - 6.3.3

For use after Lesson 6.3.3

- 1. Integrate.
 - a. $\int (x^2 3x)\sqrt{x} \, dx$ b. $\int e^x \sin\left(\frac{\pi e^x}{2}\right) x$
- 2. Find $\frac{dy}{dx}$.
 - a. $y = \frac{1}{2}(e^x e^{-x})$ b. $y = \arcsin(2^x)$
 - c. $y = \sqrt[3]{x} \tan(2x)$ d. $y = \csc^{-1}(x)$
- 3. If the perimeter of the window at right is to be 30 feet, what should the radius of the semi-circle at the top of the window be to allow the most light through?

b. $\lim_{x \to 2} \frac{\int_{4}^{x^2} \sqrt{1+t} \, dt}{x-4}$

Lesson 6.4.1 – 6.4.2

For use after Lesson 6.4.2

- 1. Differentiate.
 - a. $y = \log_5(x^3 + 2x^2 3)$ b. $y = 10^{\sec x + \csc x}$
- 2. Integrate.
 - a. $\int (\sec^2(3x)) (6^{\tan(3x)}) dx$ b. $\int (2x^{-5/3} 7x^{-1} + 3) dx$
 - C. $\int \frac{5}{x} dx$
- 3. If f and g are inverse functions, $f(x) = \sin(2x)$, and $g\left(\frac{1}{2}\right) = \frac{\pi}{12}$, use the formula for derivatives of inverses to find $g'\left(\frac{1}{2}\right)$.
- 4. Use the formula for the derivative of $\sin^{-1} x$ to find $\frac{d}{dx} \left(\frac{1}{2} \sin^{-1} \left(\frac{1}{2} \right) \right)$.

Calculus Chapter 6: Review

- 1. Can you guess the letter?
 - a. Recall the definition of factorial: n! = n(n-1)(n-2)L (1). If $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$, find 6! by hand. Check your answer with your calculator.
 - b. Use the fact that 0! = 1, find $\sum_{k=0}^{3} \frac{1}{k!}$ without your calculator.
 - c. Use your calculator to find $\sum_{k=0}^{5} \frac{1}{k!}$, $\sum_{k=0}^{10} \frac{1}{k!}$, and $\sum_{k=0}^{20} \frac{1}{k!}$. Record all of the decimal places that your calculator shows.
 - d. Predict $\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$.
- 2. Find the annual percentage rate for an account earning 6% interest:
 - a. Compounded daily.
 - b. Compounded 1,000 times per year.
 - c. Compounded 10,000 times per year.
 - d. Compounded *n* times per year.
 - e. What is $\lim_{n \to \infty}$? Can you determine a concise way to write this number?
- 3. Susan and Gene are the same age. When Susan was 23, she decided to invest \$5,000 in an investment account earning 12% annual interest. Gene thought this was a good idea, so he also deposited \$5,000 in an investment account, earning 12% annual interest as well, but not until he was 29. They both decided to retire at age 65.
 - a. How much money do they each have in their accounts when they retire? What is the difference?
 - b. In general, how fast are their investments growing at any time, t?
 - c. How fast are each of their investment accounts growing when they decide to retire? What do you notice?
 - d. Approximately how long do you think it takes the accounts to double?

No Calculator

- 4. Differentiate.
 - $f(x) = e^{3\ln(\sin x)}$ Q. $v = 5^{x^3 + \cos 2x}$ b. c. $f(x) = (7x^2 - 2x)^6 (6^{7x})$ d. $y = \cos^{-1} 3x$ e. $y = \log_4(2x^3 - e^x)$ h. $y = \sec(x^2)\sqrt{x}$ g. $y = \frac{1}{2(e^x - e^{-x})^2}$
- 5. Find the following derivatives implicitly.
 - a. $\ln(xy) x^3 = 3y^2$ b. $13x^3y = 4^{xy}$ d. $x(x^2+1)(y-1) = x - y$ c. $3y + e^x = \sin 2y$
- 6. Integrate.
 - a. $\int \left(\frac{2x^2 3x + 4}{x}\right) dx$ b. $\int (\sec 2x \tan 2x) dx$ C. $\int (\ln 5) 5^{4x} dx$
- 7. Evaluate each limit.
 - $\text{C.} \quad \lim_{x \to \infty} \frac{-3x^5 x^2 + 1}{5 + x^3 7x^5}$ b. $\lim_{x \to 0} \frac{-3x^5 - x^2 + 1x}{5 + x^3 - 7x^5}$
 - d. $\lim_{x \to 0} \frac{\sin x^2}{(\sin x)^2}$ c. $\lim_{x \to 0} (1+2x)^{1/x}$
- 8. Find the equation of the tangent line at x = e for $y = x \ln x + 3$.

- f. $y = \ln\left(\cot^2 x + \csc 2x\right)$

d. $\int_{0}^{\pi/2} \cos^3\left(\frac{1}{2}x\right) \sin\left(\frac{1}{2}x\right) dx$

9. Suppose you are driving 90 ft/sec (about 60 mi/hr) behind a truck. When you get the opportunity to pass, you step on the accelerator, giving the car an acceleration $a = \frac{4}{\sqrt{t}}$, where a is in (feet per second) per second and t is in seconds.

- a. What is the velocity function?
- b. How fast are you going 9 seconds later, when you have passed the truck?
- c. How far did you travel in that time?
- d. What was your average velocity for the 9 second interval?
- 10. Find all values of x which satisfy the Mean Value Theorem for $f(x) = x^2 + 1$ on the interval [-1, 3].
- 11. Find the equation of the line tangent to the inverse of the given function at the given point.
 - a. $f(x) = x^3 + 2x 1$; (2, 1) b. $f(x) = x^{7/3}e^{x^2}$; (e, 1)
 - C. $f(x) = 5x \cos(3x)$; (-1, 0) d. $f(x) = x^4 + (\ln x)^3 + 2$; (3, 1)
- 12. Find the inverse of each function.
 - a. $f(x) = 3\log_5(x-1)+2$ b. $f(x) = 9 \cdot 6^{x+7}-4$ c. $f(x) = 3\sin(4x)-5$ d. $f(x) = \frac{7}{2}x^{1/4}+8$
- 13. Use what you know about limits and derivatives to analyze the graph of $y = \frac{3x^2}{x^2-9}$.
- 14. Sketch a continuous function with the following properties:
 - f(1) = 1 f(3) = 3

 f(-5) = 5 $\lim_{x \to \infty} f(x) = 3$

 f'(3) = 0 f(x) is even

15. Evlauate the given limits.

a.
$$\lim_{x \to 0} \frac{\int_{1}^{4+2x} \sin t^2 dt - \int_{1}^{4} \sin t^2 dt}{x}$$
 b. $\lim_{h \to 0} \frac{\int_{m}^{m+h} f(x) dx}{h}$

- 16. Find the equation of the line tangent to the curve $x^2 + 4xy + y^2 = 1$ at x = 1.
- 17. Given the graph of $y = 3^{-x^2}$ at right, find the x-value will yield the maximum possible area of a rectangle inscribed under the curve.
- 18. The velocity (in meters per second) of a particle moving in a straight line is given by $v(t) = t \sin(t^2)$. Find the total distance traveled by the partical from t = 0 to $t = \frac{\pi}{2}$ seconds.
- 19. Let $f(x) = \int_0^x (t+1)(t-2)(\ln t)dt$. For what values of x is f(x) increasing?
- 20. (BC) Evaluate the improper integrals.
 - a. $\int_{0}^{\infty} e^{-4x} dx$ b. $\int_{0}^{3} \frac{1}{x^{3}} dx$
 - C. $\int_0^5 \frac{1}{(x-2)^{1/3}} dx$ d. $\int_1^\infty \frac{y}{y^2+1} dy$

Lesson 7.1.1 – 7.1.3 For use after Lesson 7.1.3

- 1. Integrate.
 - $\Box. \quad \int \frac{\cot \sqrt[3]{x}}{\sqrt[3]{x}} dx \qquad \qquad b. \quad \int (\tan 3x)^3 \sec^2 3x \, dx$
- 2. Differentiate.
 - a. $f(x) = 3^{3 \ln(\cos x)}$ b. $f(x) = (7x^2 - 2x)^6 (6^{7x})$
- 3. Find all x-values which satisfy the Mean Value Theorem on the interval [-1, 3] for $f(x) = x^2 + 1$.

4. The vase shown at right is being filled with water at a constant rate. Describe how the hieght of the water is changing with respect to time.

- 5. (BC) Evaluate the improper integrals.
 - a. $\int_{0}^{2\pi} \frac{1}{x^2} \sin\left(\frac{1}{x}\right) dx$ b. $\int_{0}^{1} \frac{3}{\sqrt{x}} dx$

Lesson 7.2.1 For use after Lesson 7.2.1

- 1. Integrate.
 - a. $\int \frac{1-\sin x}{x+\cos x} dx$ b. $\int \frac{e^{\tan x}}{\cos^2 x} dx$
- 2. Differentiate.
 - a. $y = \cos^{-1} 3x$ b. $y = 5^{x^3 + \cos 2x}$

3. Paul is filling up his pool at a rate of 15 cubic feet per minute. His pool is a rectangular prism with a length of 25 feet, a width of 15 feet, and a depth of 6 feet. How is the depth of the water changing with respect to time?

- 4. The position of a ball is given by $s(t) = t^2 7t + 10$ where s(t) is in meters and t is in seconds.
 - a. Find the average velocity of the ball from t = 0 to t = 5.
 - b. When is the ball traveling at its average velocity?
- 5. Evaluate the given limits.
 - a. $\lim_{x \to -\infty} \frac{7x^3 5x^2 8}{-5x^3 + 3x^2 + 1}$ b. $\lim_{x \to 0} (1 + 4x)^{1/x}$

Lesson 7.2.3 – 7.2.4 For use after Lesson 7.2.4

- 1. Integrate.
 - a. $\int \sin x (1 + \cos^2 x) dx$ b. $\int \frac{\sec^2 3x}{(\tan^3 3x)} dx$
- 2. Find $\frac{dy}{dx}$.
 - a. $3y + e^x = \sin 2y$ b. $y = \sqrt{x} \sec(x^2)$

3. A weather balloon is rising vertically at the rate of 5 meters per second. An observer is standing on the ground 300 meters from the point where the balloon was released. At what rate is the distance between the observer and the balloon changing when the balloon is 400 meters high?

4. Analyze the function $f(x) = \frac{2}{3}(x-1)^2(x+2)(x-5)$.